
Coloretti et al. J Anesth Analg Crit Care            (2025) 5:21  
https://doi.org/10.1186/s44158-025-00243-0

REVIEW Open Access

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Anesthesia,
Analgesia and Critical Care

Protein C in adult patients with sepsis: 
from pathophysiology to monitoring 
and supplementation
Irene Coloretti1*, Antonio Corcione2, Gennaro De Pascale3,4, Abele Donati5,6, Francesco Forfori7, 
Marco Marietta8, Mauro Panigada9, Paolo Simioni10, Carlo Tascini11,12, Pierluigi Viale13,14 and Massimo Girardis1 

Abstract 

Protein C (PC) plays a crucial role in modulating inflammation and coagulation in sepsis. Its anticoagulant and cyto-
protective properties are critical in mitigating sepsis-induced coagulopathy, which is associated with high mortality 
rates. In sepsis, low levels of PC are associated with an elevated risk of multiple organ dysfunction and increased mor-
tality. Routine monitoring of PC levels is not widely implemented but appears relevant in selected populations, such 
as patients with purpura fulminans, sepsis-induced coagulopathy (SIC), disseminated intravascular coagulopathy (DIC) 
or hyperinflammatory septic shock phenotypes. Treatment with PC has been limited to PC concentrate approved 
for paediatric use in congenital PC deficiencies and purpura fulminans, while the efficacy of PC supplementation 
in sepsis remains a subject of debate. Considering the physiological significance of PC and its role in sepsis patho-
physiology, additional studies are necessary to fully elucidate its therapeutic efficacy in specific clinical settings.
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Background
The interplay between the immune response, coagula-
tion, and endothelial function regulates the host response 
to infection, and the dysfunction in their interaction 
results in a dysregulated response to infection [1]. The 
inflammatory immune response in sepsis induces promi-
nent activation of leukocytes, platelets, and endothelium, 
precipitating excessive activation of the coagulative sys-
tem, frequently accompanied by impaired anticoagulant 
and fibrinolytic systems, culminating in sepsis-induced 
coagulopathy in at least a quarter of septic patients [2–5]. 
Sepsis-induced coagulopathy (SIC) is a clinically relevant 
complication of sepsis-induced organ dysfunction, and 
the progression to disseminated intravascular coagula-
tion is associated with a high risk of mortality [6, 7].

Endogenous protein C (PC), a vitamin K–depend-
ent serine protease synthesized predominantly in the 
liver, exhibits significant anticoagulant and cytoprotec-
tive activities, and thus plays a crucial role in the inter-
play between inflammation and coagulation. Numerous 
studies have demonstrated that in patients with sepsis, 
low levels of PC are associated with an elevated risk of 
multiple organ dysfunction and increased mortality rates. 
Consequently, PC has been considered a potential thera-
peutic target in critically ill patients for several decades, 
albeit with inconclusive results and lack of definitive 
evidence.

In this narrative review, we aimed to elucidate the basic 
mechanisms underlying coagulation disturbances in sep-
sis, examining the role of the PC pathway and its altera-
tions in patients with sepsis, and evaluating the rationale 
for PC assessment and eventual supplementation in these 
individuals.

Sepsis‑induced coagulopathy
Proteinase-activated receptors (PARs) act as a link 
between immune response and coagulation, interacting 
with Toll-like receptors (TLRs) to enhance the release 
of pro-inflammatory mediators and induce the produc-
tion of tissue factor (TF), an initiator of the coagulation 
cascade [8–10]. Interleukin- 1 (IL- 1) can upregulate the 
expression of TF in endothelial cells, monocytes, and 
other cell types, leading to an increased procoagulant 
state [11]. Immune-thrombosis (or thromboinflamma-
tion) refers to thrombin generation and microthrombus 
formation, contributing to pathogen recognition and 
containment activated primarily by the innate immune 
response [12].

Alongside this, it has been demonstrated that throm-
bin can directly activate surface pro-IL- 1α on mac-
rophages and activated platelets, while tissue factor, a 
potent thrombin activator, colocalizes with pro-IL- 1α in 
the epidermis. Thrombin-cleaved IL- 1α was detected in 

humans during sepsis, highlighting the relevance of this 
pathway for both normal physiology and the pathogen-
esis of inflammatory and thrombotic diseases [13].

Coagulation factors such as thrombin can activate 
immune cells and increase the production of pro-inflam-
matory cytokines. Fibrin, the main component of blood 
clots, acts as a scaffold for immune cells and promotes 
their recruitment and activation at site of infection [14].

In clinical practice, SIC is often considered synony-
mous with Disseminated Intravascular Coagulation; 
however, these two terms refer to different stages of 
coagulopathy in patients with sepsis. SIC is a non-overt 
disseminated intravascular coagulation (DIC), also 
described as systemic intravascular coagulation, but 
without gross consumption of coagulation components, 
and is characterized by a procoagulant state in the early 
stages of sepsis [15]. Recently, a definition of sepsis-
induced coagulopathy was introduced to identify patients 
at an earlier stage when changes in coagulation status are 
still reversible [16] by targeting excessive immune activa-
tion, thrombin generation, and endothelial dysfunction 
[17]. Furthermore, the ISTH released a set of simplified 
diagnostic criteria designed to detect SIC in the early 
phase of sepsis before progression to overt DIC [18]. SIC 
includes a Sequential Organ Failure Assessment (SOFA) 
Score of > 2, platelet count, and prothrombin time, mak-
ing this assessment easily performed at the bedside, 
as the SOFA score is traditionally used to evaluate the 
severity and extent of organ failure in septic patients. 
The SOFA is composed of scores from six organ systems, 
graded from 0 to 4 according to the degree of dysfunc-
tion/failure. In the Sepsis- 3 definition, organ dysfunction 
was identified and quantified using the SOFA score as it 
is well established, widely used, easily implemented and 
performs reasonably well in the early prediction of out-
come in ICU patients with infection [19].

The prevalence and mortality of SIC in sepsis (using the 
Sepsis- 3 definition) were evaluated in a secondary analy-
sis of two RCTs [6], in which the prevalence of SIC was 
22.1% and 24.2%, respectively. The 90-day mortality rate 
of patients with SIC in the HYPRESS study (sepsis with-
out shock) was twofold higher than that of patients with-
out SIC. Although a small population (15 patients in the 
SIC group and 28 patients in the no-SIC group died), the 
study concluded that SIC is associated with higher mor-
bidity and mortality and should be diagnosed and man-
aged to reduce sepsis-associated organ injury.

In the last edition of Surviving Sepsis Campaign guide-
lines, the role of altered coagulation and SIC recognition 
is poorly emphasized, and the chapter “anticoagula-
tion’’, referring to possible therapeutic interventions, was 
omitted from the latest edition of the guidelines [20]. In 
contrast, the latest Japanese Sepsis guidelines of 2020, 
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encourage early detection of DIC and weakly recommend 
the use of anticoagulants for sepsis-associated DIC [21].

Protein C synthesis and mechanisms of action
PC is synthesized predominantly in the liver, but also 
in the epididymis, kidney, lung, brain, and male repro-
ductive tissue [22] as a single polypeptide chain of 461 
amino acids [23]. PC is multimodular and contains struc-
tural elements that are similar to those of other vitamin 
K-dependent coagulation proteins. Following transcrip-
tion, γ-carboxylation is essential for the efficient secre-
tion of PC and for imparting its pleiotropic properties, 
which include anticoagulant and cytoprotective effects. 
However, to fully realize these pleiotropic effects, PC 
must be activated to form activated protein C (aPC). The 
conversion of PC to aPC results from the cleavage of an 
Arg169-Leu170 peptide bond, which releases a dodecapep-
tide from the heavy chain. This reaction is enhanced by 
binding of thrombin to thrombomodulin [24]. After its 
production, the half-life of PC in the bloodstream is 6–10 
h [25].

PC exerts its anticoagulant properties by inactivating 
the factors Va and VIIIa, which are important cofactors 
of the coagulation cascade. These events are enhanced 
by the presence of Ca2+, phospholipids, and protein S 
as cofactor [26]. Other functions of aPC in haemostasis 
rely on its ability to downregulate thrombin and suppress 
the activation of thrombin activatable fibrinolytic inhibi-
tor (TAFI), thus indirectly promoting fibrinolysis [27]. 
Fibrinolysis is also enhanced by aPC through inhibition 
of plasminogen activator inhibitor- 1 (PAI- 1) [28].

Protein C also exhibits cytoprotective properties, 
including anti-inflammatory and anti-apoptotic activi-
ties, and preserves endothelial barrier function. Its 
anti-inflammatory properties are mediated through the 
suppression of transcription of nuclear factor-κB (NF-κB) 

subunits, thereby inhibiting the expression of down-
stream NF-κB target genes. This process consequently 
impedes the tumour necrosis factor (TNF)-dependent 
induction of adhesion molecules, such as E-selectin, 
ICAM- 1, and VCAM- 1. Concomitantly, aPC down-
regulates TNF-α–induced binding of monocytes [29]. 
In addition, aPC was found to inhibit lipopolysaccharide 
(LPS)- and interferon-γ–related production of several 
proinflammatory cytokines in monocytes [30], and to 
increase the production of anti-inflammatory cytokines 
such as interleukin- 10 (IL- 10) and transforming growth 
factor-β [31]. In  vitro studies have demonstrated that 
aPC can block neutrophil and eosinophil migration when 
stimulated by chemoattractants [32, 33].

Antiapoptotic activity relies on the ability of aPC to 
modulate antiapoptotic transcription profiling, upregu-
lating the antiapoptotic protein, B-cell lymphoma- 2, the 
endothelial survival factor eNOS, and the inhibitor of 
apoptosis genes, and the suppression of genes promoting 
apoptosis, such as calreticulin and TRMP- 2 [29]. Moreo-
ver, aPC treatment blocks the induction of apoptosis in 
several cell lines and inhibits TNF-α-stimulated apopto-
sis [34–36].

Protein C in sepsis
The role of the PC pathway in sepsis has been widely 
investigated and demonstrated to be crucial in the 
response to invading organisms [14, 37] (Table  1). The 
activation of Toll-like receptor 4 (TLR4) on monocytes 
mediated by pathogens or immunostimulatory patho-
genic agents, such as endotoxin [38], leads to the acti-
vation of coagulation through the upregulation of tissue 
factor (TF) [39] and enhances cytokine production, espe-
cially TNF-α, IL- 1, IL- 6, and IL- 8 [40]. These cytokines 
inhibit the nuclear transcription of thrombomodulin 
(TM) and EPCR, and promote receptor shedding and 

Table 1  Effects of endogenous protein C, experimental models, and possible clinical relevance in patients with infection

** Valuable
*** Important
**** Relevant

Tissue Effects Experimental models Clinical 
relevance

Cellular a) Cytoprotective activity through PAR- 1
b) Anti-apoptotic activity downregulating p53 and Bax

In vitro **

Vascular a) Endothelial barrier stabilization through up-regulation of sphingosine kinase- 1 In vitro **

Coagulation a) Anticoagulant activity through inactivation of FVa and FVIIIa on negatively charged 
phospholipid membranes

Animal
Human

****

Immune a) Reduced production of inflammatory cytokines through NF-kB inhibition
b) Reduced expression of cell adhesion molecules such as ICAM- 1 and VCAM- 1
 → Inhibition of leukocyte recruitment

Animal ***
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cleavage of TM from the endothelial surface mediated by 
neutrophil elastase, with the overall effect of diminish-
ing the capacity of the endothelium to activate PC [41]. 
In addition, TNF-α and IL- 1 primarily inhibit PC pro-
duction in the liver and other organs by blocking mRNA 
transcription [42]. Additionally, low levels of protein C 
induced by inflammation lead to higher levels of avail-
able PAI- 1 and higher levels of thrombin, thus enhanc-
ing the activation of TAFI and inhibiting fibrinolysis [43]. 
Moreover, higher levels of thrombin and other coagu-
lative proteases influence proinflammatory signalling 
through protease-activated receptors, thus making this 
process self-sustaining and triggering a vicious cycle [44]. 
As a result, the overexpression of cytokines in sepsis and 
septic shock promotes the coagulation pathway by inhib-
iting anticoagulant components such as protein C. This 
process is further amplified by reduced fibrinolysis, asso-
ciated with low levels of aPC.

The endothelium plays a crucial role in the septic 
response [45] and PC system regulation, as the produc-
tion of inflammatory mediators such as TNF-α and 
thrombin in the bloodstream has significant down-
stream effects on endothelial cells. Primarily, thrombin 
alters the integrity of the endothelial barrier [46], likely 
through the downregulation of tight junction proteins 
and the subsequent rearrangement of the cytoskeleton 
[47]. This endothelial activation triggers various effects 
that regulate the septic response, including extravasa-
tion of inflammatory leukocytes in tissues. The produc-
tion and secretion of PAI- 1 by the activated endothelium 
results in the inhibition of fibrinolysis and upregulation 
of coagulation. Some studies have suggested that leuko-
cytes may be the major targets for the protective effect 
of aPC on the endothelium in severe sepsis. In fact, it 
has been demonstrated that aPC binds to leukocyte 
integrins, thereby inhibiting the migration of neutro-
phils into tissues [48]. Moreover, results of several stud-
ies have indicated that the EPCR-dependent endothelial 
protective activity of APC is mediated through crosstalk 
with other G- and non-G-protein coupled receptors [33, 
49, 50]. Finally, some studies have revealed that when 
EPCR is occupied by protein C, the cleavage of PAR- 1 by 
thrombin elicits only protective signalling responses in 
endothelial cells [51].

Many of these effects have been observed in subjects 
with genetic deficiencies in PC, resulting in very low 
endogenous protein levels. In studies conducted in mice, 
were demonstrated hypercoagulable and hyperinflam-
matory patterns [52, 53]: following an LPS challenge, 
low endogenous levels of PC make mice susceptible to 
early-onset DIC, thrombocytopenia, hypotension, organ 
damage, and decreased survival. Moreover, these low-
PC mice exhibited a heightened inflammatory response, 

which was significantly less pronounced in wild-type 
cohorts. Symptomatic heterozygous deficiencies in 
humans can result in deep vein thrombosis and pulmo-
nary embolism. Homozygous PC deficiencies are rare 
and associated with fatal systemic disseminated intravas-
cular thrombosis, purpura fulminans, its cutaneous man-
ifestation [54]. Evidence from these observations makes it 
clear that the PC pathway, thought to be merely a part of 
the haemostatic system, has emerged as a key mediator 
in inflammatory pathways. The PC pathway acts at the 
intersection of coagulation and inflammation and plays 
an important role in tissue injury and damage associated 
with acute and chronic inflammation.

Protein C levels and monitoring
At birth, the natural anticoagulants are reduced with the 
notable exception of alpha- 2-macroglobulin, which is 
increased [55]. For this reason, in neonatal period PC lev-
els are low, typically less than 50% of adult normal values 
[55–58], and gradually increase, reaching adult levels by 
6–12 months of age [56, 59]. Additionally, PC is present 
in a’fetal’form at birth [59, 60], though its physiological 
differences remain unclear. Preterm infants exhibit even 
lower levels at birth [61], while small-for-gestational-age 
(SGA) neonates are reported to have a certain degree of 
resistance to activated PC [62]. In adult patients normal 
values of PC plasma activity have been assessed from 70 
to 150% [63].

PC levels can be measured in plasma by activity and 
antigen assays. Functional tests for PC activity are mainly 
based on two methods: (1) the aPTT derived method 
(coagulometric or anticoagulant) in which the prolonga-
tion of the clotting time after activation of PC by Pro-
tac™ (Pentapharm, DSM biomedical) is proportional to 
the amount of PC present in patient’s plasma; (2) in the 
chromogenic (amidolytic) method protein C activity is 
detected by means of a specific chromogenic substrate 
which is cleaved by aPC after activation of PC by Protac™ 
[64]. The former is also more sensitive to the presence 
of gamma-carboxylation forms of PC, the latter bet-
ter explores the catalytic activity of PC, once activated, 
towards its specific chromogenic substrate. The concen-
tration of PC present in patient’s plasma can be detected 
by an ELISA antigen assay using catching monoclonal 
antibodies against PC and detecting anti-PC antibodies 
bound to horseradish peroxidase. In general, PC func-
tional activity mirrors PC antigen levels. However, in 
case of liver dysfunction there can be hypocarboxylated 
forms of vitamin K-dependent factors including PC and 
lower functional levels can be detected by coagulometric 
as compared to amidolytic activity method, as in cases of 
congenital type II PC deficiencies (Table 2). Thus, in such 
a situation the correct selection of the method used for 
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the evaluation of PC levels in plasma is important. These 
features are well known in patients with inherited PC 
defects whose PC activity levels may vary depending on 
the type of functional method used [65] (Table 2).

Previous studies have demonstrated that more than 
80% of patients with severe sepsis have a baseline PC 
level below the lower normal cut-off, a reduction in 
endogenous PC levels [66] due to increased consump-
tion, decreased protein synthesis in the liver, and proteo-
lytic degradation by neutrophil elastase [67–70]. Given 
the aforementioned pleiotropic effects of PC, it seems 
reasonable to hypothesize that low levels may affect 
the clinical course of sepsis and septic shock [71–76] 
(Table  2). To date, routine measurement of PC is not 
commonly used in sepsis [20] and has only been reported 
in a few clinical studies. Low protein C activity has been 
demonstrated to be a good predictor of the degree of 
organ dysfunction in an observational study conducted 
on 743 septic patients in intensive care unit (ICU) [74]. 
The authors demonstrated that reduced PC activity cor-
related with specific components of the SOFA score, 

including platelet count, liver function, and circulation. 
Other studies have focused on the relationship between 
PC activity and acute kidney injury (AKI), revealing 
that PC activity decreases significantly according to AKI 
severity [71–73]. A recent meta-analysis, including 12 
studies, demonstrated that PC levels were significantly 
higher in sepsis survivors than in non-survivors and in 
patients with sepsis without disseminated intravascular 
coagulation [75]. Considering the physiological role of 
PC, the pathophysiology of sepsis, and the observed data, 
it seems reasonable to consider the measurement of PC 
levels useful to better define the coagulative and inflam-
matory status of patients with sepsis and septic shock.

There are assays that allow to quantify circulating aPC 
levels with high sensitivity and accuracy and can be per-
formed in specialized laboratories. These assays can be 
classified into two groups: those that capture aPC and 
directly measure its enzymatic activity [77–80], and those 
that use heparin during blood sampling and quantify the 
aPC-Protein C inhibitor (PCI) complex [81, 82]. The main 
advantage of the first group of assays is that they measure 

Table 2  Characteristics of congenital and acquired Protein C deficits

Modified from: Dinarvand P, Moser KA. Protein C deficiency. Arch Pathol Lab Med 2019; 143:1281- 1825; Cooper PC, Pavlova A, Moore GW, Hickey KP, Marlar RA. 
Recommendations for clinical laboratory testing for protein C deficiency, for the subcommittee on plasma coagulation inhibitors of the ISTH. J Thromb Haemost. 
2020;18(2):271–277

AVK anti-vitamin K, DIC disseminated intravascular coagulation, PC protein C, aPTT activated partial thromboplastin time

Type of deficiency Mechanisms of deficiency Antigen Chromogenic 
activity

Coagulometric activity

Congenital deficiencies

  I Quantitative or true deficiency
(75% of patients)

↓ ↓ ↓

  II Qualitative or dysfunctional
(IIa 23,75% and IIb 1.25% of patients)

N ↓ (IIa)
N (IIb)

↓

  II Quantitative and qualitative ↓ ↓↓ ↓↓
Acquired deficiencies

Liver diseases
Vitamin K deficiency
AVK treatment
DIC
Sepsis
Chemotherapy with L-asparaginase
Nephrotic syndrome
Solid malignancies

Reduced synthesis/increased clearance ↓ ↓ ↓

Antibodies against PC Mainly inhibitors N ↓ ↓
Factors potentially interfering with results

  Pregnancy – ↑
(early)

–

  DOAC – - False ↑
  Clotted/activated samples – False ↑ False ↓
  Lupus anticoagulant (aPTT-based, not dRVVt) – – False ↑
  Factor V Leiden/Factor VIII > 200% – – False ↓

(with aPTT-based assays)

  Increased FVIII activity > 200% – False ↓
(with aPTT-based assays)
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free circulating activated PC levels, while those assays in 
the second group measure free aPC bound to its inhibi-
tor, PCI, and aPC. However, these assays also reflect the 
concentration of circulating aPC quite accurately, since 
the levels of aPC:PCI complexes circulating at the time 
of sampling were much lower than the aPC:PCI lev-
els formed from the free aPC present at sampling [82, 
83]. They also measured only the circulating aPC that 
is active, since its activity is necessary to inactivate and 
complex with its inhibitor, PCI.

Monitoring of protein C: which patient?
Although PC is not routinely measured in clinical prac-
tice, it appears to be particularly relevant in three septic 
populations with potential coagulation disorders: those 
with purpura fulminans, those with septic shock and pos-
itive SIC/DIC, and those with septic shock exhibiting a 
hyperinflammatory phenotype.

Purpura fulminans is most frequently seen in children 
presenting with severe septic shock due to meningococ-
cemia [84]; otherwise, purpura fulminans also occurs 
in the scenario of homozygous or double heterozygous 
PC deficiency [85]. Indeed, purpura fulminans may be 
described as the clinical manifestation of a severe PC 
deficiency and acute PC pathway failure [86]. Conse-
quently, PC substitution in patients with purpura fulmi-
nans has been adopted with promising results [87–90]. 
Measurement of PC levels to assess diagnosis and sever-
ity of its deficiency and eventually to initiate the treat-
ment and tailor the dosage should be considered in 
patients with purpura fulminans.

Similarly, it seems useful to measure PC levels in 
patients with septic shock and signs of SIC/DIC as PC 
plays a role in the interaction between immune system 
and coagulation pathways. Animal studies demonstrated 
that low endogenous levels of PC were associated to 
early-onset DIC in sepsis models and, in humans, symp-
tomatic heterozygous deficiencies can result in fatal sys-
temic disseminated intravascular coagulation [54].

The hyperinflammatory phenotype of septic shock is 
referred to the early phases of sepsis, in which the pro-
inflammatory response predominates. This phase is char-
acterized by the massive production of proinflammatory 
cytokines associated with inappropriate anti-inflamma-
tory response [91]. This may quickly result in multiple 
organ dysfunction, overwhelming shock, and death [92]. 
In this phase, functional impairment of the endothelium 
plays a key role, and as this mechanism proceeds, may 
lead to coagulopathy (SIC/DIC). In these patients, early 
measurement of PC at the onset of shock may help pre-
dict the development of SIC/DIC and potentially guide 
the use of preventive strategies for these complications, 

which are associated with an increased risk of mortality 
(Fig. 1).

Treatment with protein C
When considering treatment with protein C, two types of 
preparations have been proposed: recombinant activated 
protein C and the inactive zymogen form, which requires 
activation within the patient’s system. However, following 
the market withdrawal of the recombinant activated pro-
tein C formulation (drotrecogin alfa activated, DAA) in 
2011—based on preliminary results from the PROWESS-
SHOCK follow-up trial [93]—its use was discontinued, 
shifting the focus of clinical trials toward the inactive 
zymogen formulation. Otherwise, the effectiveness of 
infused inactivated PC in mitigating the effects of septic 
shock on coagulation relies on its successful conversion 
to aPC in  vivo. While a previous study demonstrated 
that PC concentrate is converted to aPC in asympto-
matic individuals, its activation in patients with PF and 
septic shock, who exhibit a severe coagulation pathway 
derangement, had yet to be established. Recently, a study 
suggested that this activation process may be impaired in 
such patients [94]. This is attributed to the thrombomod-
ulin-protein C (TM-PC) system, which is believed to play 
a pivotal role in disease pathogenesis [95, 96]. According 
to this model, the early loss of TM impairs the activation 
of both endogenous and therapeutically administered 
protein C. However, some studies have indicated that 
infused PC can be effectively converted to aPC in 
patients with PF, suggesting that supplemental protein C 
may be beneficial even in cases of TM-PC pathway failure 
[87, 96].

Purpura fulminans
Purpura fulminans is a life-threatening condition asso-
ciated with infection characterized by the association of 
a sudden and extensive purpuric rash together with an 
acute circulatory failure [97]. Purpura fulminans accounts 
for less than 0.5% of the cases of septic shock. Neisseria 
meningitidis and Streptococcus pneumoniae are the lead-
ing causative bacteria [97] and, although these pathogens 
are highly susceptible to available antibiotics, mortality 
and morbidity of purpura fulminans remain very high 
[98]. This occurs because the invading pathogen triggers 
a rapid activation of the immune and coagulation sys-
tems. Once initiated, this process becomes self-sustain-
ing, causing damage even after the pathogen has been 
eradicated. Experimental models show that the specific-
ity of meningococcal purpura fulminans compared to 
other diseases causing disseminated intravascular coag-
ulopathy is mainly caused by the interaction between 
Neisseria Meningitidis and endothelial cells, with subse-
quent vascular damages [99, 100]. The alterations of the 
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endothelium induce the development of an acquired PC 
deficiency with possible implications on both local coag-
ulation and inflammation [95]. Interestingly, purpura ful-
minans also occurs in the rare scenario of homozygous 
or double heterozygous protein C deficiency [85]. Indeed, 
the clinical manifestation of a severe PC deficiency in the 
form of purpura fulminans has resulted in the description 
of purpura fulminans closely related to acute PC pathway 
failure [86]. Consequently, many intensivists have used 
PC substitution in patients with purpura fulminans, with 
promising results both in children and adults [87–90, 
101, 102] (Table 3). First small observational studies were 
conducted on pediatric populations [87, 88, 103] with 
PF caused by infectious source, demonstrating positive 
effects on predicted morbidity and mortality reduction, 
and in restoring haemostatic balance and microcircula-
tion integrity. In 2003, a double-blind RCT randomized 
40 children with PF and septic shock to receive intrave-
nous placebo (albumin human 1%) or 50 IU/kg, 100 IU/
kg, or 150 IU/kg PC concentrate given as an intravenous 
bolus every 6  h during the first 72 h after study entry 
and every 12 h thereafter, up to a maximum total treat-
ment period of 7  days [90]. Authors concluded that PC 
concentrate is a safe and effective treatment for children 
with purpura fulminans and meningococcal septic shock, 
resulting in dose-dependent increases in aPC plasma 
levels and the correction of coagulation disturbances. A 
subsequent retrospective multicenter study included 94 
children with PF and septic shock, primarily caused by 
Neisseria meningitidis (79.8%), who received treatment 
with protein C concentrate. The study demonstrated 
the absence of major bleeding events, with only cases of 
epistaxis reported. Additionally, a lower incidence of der-
matoplasty and limb amputation was observed, poten-
tially attributable to the beneficial effects of protein C on 
microcirculation. Considering adult patients, only small 
observational studies and case-series have been pub-
lished [102, 104, 105], suggesting that PC concentrates 
in PF might be a useful treatment especially in limiting 
the extent of tissue necrosis. Interestingly, a case report 
published in 2018 [105] examined the kinetics of TM loss 
during PF, which is thought to impair the conversion of 
PC concentrate into activated PC. The authors found that 
TM loss was not an early event, occurring only after 72 h. 
This finding suggests that supplemental PC administra-
tion may remain effective even in patients who initially 
present with apparent failure of the TM-PC pathway.

Overall, these studies suggest that treatment with PC 
can normalize plasma levels, lower markers of SIC/DIC 
and possibly reduce morbidity and mortality (Table 3). At 
present, PC concentrate has an off-label indication but 
is reimbursed by AIFA for children with meningococ-
cal sepsis and/or purpura fulminans (Fig. 1). The dosage 

recommended by manufacturers is an initial bolus of 
60–80 IU/kg, followed by dosage adjustments based 
on PC activity measurement via chromogenic assay to 
achieve a plasma PC activity of > 25% [106].

Sepsis
Systemic inflammation characterizing host invasion by 
pathogens in sepsis is responsible for systemic coagula-
tion activation with intravascular procoagulant pheno-
typic changes. As mentioned, in nearly 20% of patients 
[6], this inflammatory response disrupts the coagulation 
balance through many mechanisms, resulting in SIC, 
which may progress to overt DIC, leading to increased 
mortality risk [6]. These conditions are characterized 
by widespread activation of leukocytes, platelets, and 
endothelium, with excessive activation of the coagulative 
pathways, often combined with defective anticoagulant 
and fibrinolytic systems, resulting in widespread throm-
bosis and consumptive coagulopathy [2–4]. For these 
reasons, different anticoagulant treatments were pro-
posed to manage SIC and DIC occurrence in sepsis [107], 
but the benefits and harm caused by these anticoagulants 
remain unclear [20, 108].

Based on the rationale of the documented deficiency of 
protein C in sepsis and its pleiotropic effects previously 
described, recombinant human-activated PC has been 
proposed for treatment of sepsis and septic shock with 
or without SIC or DIC. PC administration was demon-
strated to inhibit thrombosis, promote fibrinolysis, and 
exert many anti-inflammatory properties and endothe-
lial barrier protection functions [109, 110]. Drotrecogin 
alpha activated (DAA), a recombinant aPC, was approved 
in 2001 for the treatment of severe sepsis based on the 
results of the landmark PROWESS trial [69]. In this 
double-blind, multicenter RCT patients with severe 
sepsis were enrolled and assigned to receive an intra-
venous infusion of either placebo or drotrecogin alfa 
activated. Authors found that treatment significantly 
reduced mortality, D-dimer levels and inflammation 
markers levels (IL- 6). Otherwise, they state that treat-
ment with aPC may be associated with an increased risk 
of bleeding. Further secondary analysis was conducted by 
dividing patients enrolled in the PROWESS study in sub-
populations based on mortality risk at baseline [111]. The 
authors found that the administration of drotrecogin alfa 
(activated) to patients with severe sepsis was associated 
with a significant survival benefit that tended to increase 
with higher baseline severity. Otherwise, the initial suc-
cess of this treatment could not be replicated in patients 
with a low risk of death or in children with severe sep-
sis [112, 113]. In October 2011, Eli Lilly withdrew DAA 
from the market based on the preliminary results from 
the follow-up PROWESS-SHOCK trial that showed 
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no mortality benefit at 28 days [93]. This double-blind, 
placebo-controlled, multicenter RCT randomized 1697 
patients with septic shock to receive aPC or placebo for 
96 h. The authors failed to demonstrate any benefit in 
death from any cause at 28 days. Of note, results from 
this trial have been largely debated. First of all, statisti-
cal power for mortality detection was < 80%, secondar-
ily, mortality was lower than expected and then that in 
PROWESS. Few studies were published on the use of PC 
zymogen in patients with septic shock, reporting in some 
observational studies the safety and potential efficacy of 
this treatment [114, 115]. In 2016 Zangrillo et  al. per-
formed a double blind RCT including adult patients with 
severe sepsis or septic shock and high risk of death and 
of bleeding (APACHE II greater than 25, extracorporeal 
membrane oxygenation or DIC) [116]. Patients were ran-
domized to receive PC zymogen (50 IU/kg in 20 min fol-
lowed by continuous infusion at 3 IU/kg/h) or equivalent 
volume normal saline as placebo for 72 h. The study was 
stopped early for concomitant safety issue: ICU mortality 
was 79% (15 patients) in the PC zymogen group vs 39% 
(7 patients) in the placebo group (p = 0.020), and 30-day 
mortality was 68 vs 39% (p = 0.072). Otherwise, some 
limitations have to be issued: though patients with DIC 
were included, the proportion was only 21.6% of the pop-
ulation; patients included had extremely high baseline 

mortality risk (65%); it might had been more useful to 
show changes in activated PC activity rather than acti-
vated partial thromboplastin time and prothrombin time, 
as the main effect of PC is exerted on thrombomodulin. 
Some authors addressed that it may be too early to con-
clude that PC zymogen is not effective in all cases of sep-
sis, especially when SIC or DIC are present [117].

After these trials, there remains significant debate 
regarding these conflicting findings. Since the withdrawal 
of DAA, treatment with PC zymogen has been limited to 
PC concentrate only approved for pediatric use in con-
genital PC deficiencies and in purpura fulminans (Fig. 1).

Conclusions
PC plays a key role in modulating inflammation and 
coagulation in sepsis. Routine monitoring of PC levels, 
although not routinely implemented, can be useful in 
specific populations, such as patients with purpura ful-
minans, SIC/DIC, or hyperinflammatory septic shock 
phenotypes. Because of the scarce available evidence, 
a large debate persists regarding the efficacy of PC sup-
plementation in sepsis, though PC treatment is currently 
approved, in USA and EU, only for congenital deficien-
cies and purpura fulminans.

Fig. 1  Proposed clinical scenarios for measuring protein C in critically ill patients and proposed indications for PC concentrate treatment in specific 
subpopulations
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Nevertheless, given the physiological role of PC and its 
involvement in sepsis pathophysiology, further research 
is warranted to better define its therapeutic potential, in 
well-selected patient groups, with the aim at enhancing 
major clinical outcomes.
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