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Abstract 

Parvalbumin-positive (PV+) interneurons (basket and chandelier cells) regulate the firing rate of pyramidal neurons 
in the cerebral cortex and play a key role in the generation of network oscillations in the cerebral cortex. A growing 
body of evidence suggest that cortical PV+ interneurons become overactive in chronic pain and contribute to noci-
ceptive sensitization by inhibiting a top-down analgesic pathway. Here, we provide further support to this hypothesis 
showing that intracortical infusion of the GABAA receptor antagonist, bicuculline, caused analgesia in a mouse model of 
chronic inflammatory pain, although it reduced pain thresholds in healthy mice. We propose that mGlu5 metabotropic 
glutamate receptors and perineuronal nets (PNNs) shape the activity of PV+ interneurons in chronic pain, generating 
a form of maladaptive plasticity that enhances behavioural pain responses. mGlu5 receptors might be locally targeted 
by drugs activated by light delivered in cortical regions of the pain matrix, whereas the density of PNNs enwrapping 
PV+ interneurons might be reduced by local activation of PNN-degrading enzyme, such as type-9 matrix metallopro-
teinase. These strategies, which may require invasive treatments, might be beneficial in the management of severe 
pain which is refractory to conventional pharmacological and non-pharmacological interventions.
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Introduction
Nociceptive sensitization reflects the development of a 
maladaptive form of neuronal plasticity occurring in all 
stations of the pain neuraxis and results into increasing 
pain sensation and behavioural reactivity in response to 
sustained painful stimuli [1–5]. The study of the mecha-
nisms underlying nociceptive sensitization is moving 
from single synapses to neuronal circuits connecting the 

regions of the pain matrix. Alterations of functional con-
nectivity involving the salience network and the default 
mode network underlie suffering and embodiment of 
pain [6], which severely compromise the quality of life 
of patients with chronic inflammatory and neuropathic 
pain. Unravelling the mechanisms underlying abnormali-
ties in network activity and functional connectivity may 
gain new insights into the pathophysiology of nocicep-
tive sensitization and lay the groundwork for the design 
of novel therapeutic strategies in chronic pain. Besides 
their established role in pain perception and the emo-
tional aspects of pain, the somatosensory cortex and the 
medial prefrontal cortex are involved in the regulation of 
pain thresholds by influencing the activity of brainstem 
nuclei that mediate the top-down control of pain [7]. 
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Cortical network oscillations are generated and tuned by 
inhibitory GABAergic interneurons, which account for 
approximately 15% of the whole neuronal population in 
the cerebral cortex. There are different types of cortical 
interneurons, differentiated by their shape, location in 
the cortical layers, firing rate, and protein/peptide mark-
ers. Parvalbumin-positive (PV+) interneurons (basket 
and chandelier cells) and somatostatin-positive (SSt+) 
interneurons (Martinotti and non-Martinotti cells) origi-
nate from the medial ganglionic eminences and account 
for 70% of all interneurons, whereas the remaining 
interneurons originate from the caudal ganglionic emi-
nences [8, 9]. Abnormalities of GABAergic interneurons 
have been described in models of chronic pain. For exam-
ple, neuropathic pain is associated with an increased 
activity of PV+ interneurons and a reduced activity of 
SSt+ interneurons and vasoactive intestinal peptide 
(VIP)-expressing interneurons in the medial prefrontal 
cortex [10–12], whereas activation of SSt+ interneurons 
in the somatosensory cortex prevents the development of 
neuropathic pain [13]. Here, we focus on PV+ interneu-
rons, which are fast-spiking, make synapses with the cell 
body and axon initial segment of pyramidal neurons, and 
play a key role in the regulation of network oscillations 
[14]. We discuss how type-5 metabotropic glutamate 
(mGlu5) receptors and perineuronal nets (PNNs) shape 
the activity of PV+ interneurons and might contribute to 
nociceptive sensitization in chronic inflammatory and 
neuropathic pain.

mGlu5 receptors and chronic pain
mGlu5 receptors are coupled to Gq/11, and their activa-
tion stimulates polyphosphoinositide (PI) hydrolysis 
with ensuing formation of inositol-1,4–5-trisphosphate 
and diacylglycerol [15]. mGlu5 receptors are expressed 
in most regions of the pain neuraxis, from peripheral 
nociceptors to the regions of the pain matrix encoding 
the sensory, affective, and emotional aspects of pain, and 
contribute to the development of nociceptive sensitiza-
tion through a plethora of CNS region-specific mecha-
nisms. For example, activation of mGlu5 receptors in 
nociceptors enhances the activity of peripheral pain 
transducers (i.e. TrpV1 receptors) through a chain of 
reactions that involve intracellular calcium release, acti-
vation of cyclooxygenase, formation of prostaglandins, 
autocrine/paracrine activation of prostaglandin recep-
tors, stimulation of cAMP formation, activation of pro-
tein kinase A, and TrpV1 phosphorylation [16]. mGlu5 
receptors are highly expressed by second-order sensory 
neurons in the dorsal horns of the spinal cord, where 
their activation enhances neuronal responsiveness to 
synaptic inputs [17–19]. In their pioneer study, Robert 
Gereau 4th and his associates have found that activation 

of mGlu5 receptors in dorsal horn sensory neurons 
induces nociceptive sensitization through a mechanism 
involving activation of the extracellular-regulated kinase 
pathway and inhibition of Kv4.2 potassium channels [20]. 
Interestingly, membrane recycling of mGlu5 receptors in 
dorsal horn neurons mediated by interaction with vacu-
olar protein sorting-associated protein 26 (VPS26) and 
sorting nexin 27 (SNX27) has been implicated in the 
development of neuropathic pain in rats [21]. Chronic 
pain is also associated with changes in the expression 
and/or function of mGlu5 receptors in supraspinal cen-
tres of the pain pathway. Positive emission tomography 
studies with the mGlu5 tracer, [11C]ABP688, in rats have 
shown that spinal nerve injury caused an upregulation of 
mGlu5 receptors in the prelimbic region of the medial 
prefrontal cortex, and pharmacological blockade of 
mGlu5 receptors in the prelimbic cortex attenuated neu-
ropathic pain and associated negative mood symptoms 
[22]. Volker Neugebauer and his associates have shown 
that arthritic pain disrupts the ability of mGlu5 recep-
tors to engage endocannabinoid signaling and restrain 
synaptic inhibition in layer-5 pyramidal neurons of the 
infralimbic cortex. This maladaptive form of synaptic 
plasticity prevents mGlu5 receptors from activating an 
output pathway that attenuates pain behaviours and cog-
nitive deficits [23]. Changes in mGlu5 receptor signaling 
have been found in regions of the pain matrix in response 
to unilateral chronic constriction injury (CCI) of the sci-
atic nerve, with mGlu5-mediated PI hydrolysis being up-
regulated in the contralateral prelimbic, infralimbic and 
cingulate cortices, and basolteral amygdala [24]. mGlu5 
receptors functionally interact with CB1 cannabinoid 
receptors in the periaqueductal grey and rostral ventro-
medial medulla, the two main brainstem centres involved 
in the top-down control of pain [25, 26]. In addition, Binn 
and Salt explored the possible role of mGlu5 in thalamic 
nociceptive responses [27, 28], also showing EEG effects of 
the mGlu5 blocker, 2-methyl-6-(phenylethynyl)pyridine 
(MPEP), in addition to activity on thalamic responses.

The role of mGlu5 receptors in the regulation of pain 
thresholds has been extensively studied using selective 
mGlu5-negative allosteric modulators (NAMs), which 
inhibit receptor activity regardless of the ambient con-
centrations of glutamate and are systemically active 
owing to their high hydrofobicity. mGlu5 receptor NAMs 
have consistently shown robust analgesic activity in mod-
els of inflammatory or neuropathic pain [24, 29–44]. 
However, preclinical to clinical translation of mGlu5 
receptor NAMs has been disappointing [45], suggesting 
that the effect of these drugs in the various stations of the 
pain neuraxis is not homogenous.

Light-sensitive mGlu5 receptor NAMs have provided 
a powerful tool for the identification of brain regions 
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that are sufficient and/or necessary for the induction of 
analgesia induced by systemic mGlu5 receptor block-
ade. Light-induced activation of a caged derivative of the 
mGlu5 receptor NAM, raseglurant (compound JF-NP-
26), in the thalamus caused analgesia in the chronic con-
striction injury (CCI) model of neuropathic pain and in 
a mouse model of cancer breakthrough pain [24, 43, 44]. 
Transcutaneous illumination of JN-NP-26 also caused 
analgesia in both phases of the formalin test in mice [43]. 
As opposed to JF-NP-26, which is activated by light [43], 
the mGlu5 receptor NAM alloswitch-1 is active on its 
own and is inactivated by light at 405 nm [46]. The use 
of these two compounds allowed to establish that mGlu5 
receptor blockade in the thalamus and medial prefron-
tal cortex is both necessary and sufficient for the induc-
tion of analgesia in response to systemic mGlu5 receptor 
NAMs, whereas receptor blockade in the basolateral 
amygdala enhanced pain responses in neuropathic mice 
[24].

What is particularly relevant for this viewpoint is that 
mGlu5 receptors are highly expressed by PV+ GABAer-
gic interneurons [47] and are involved in mechanisms 
of activity-dependent synaptic plasticity in cortical fast-
spiking of PV+ interneurons [48].

Cell-specific deletion of mGlu5 receptors in PV+ 
interneurons reduced inhibitory currents and impaired 
cortical network oscillations activity [49]. mGlu5 
receptors are also involved in the development PV+ 

interneurons, as shown by a reduced expression of PV in 
the cerebral cortex and hippocampus of mGlu5 receptor 
knockout mice [50]. Interestingly, mGlu5 receptors are 
co-expressed and interact with NMDA receptors [51, 52], 
which support the activity of PV+ interneurons [53]. We 
suggest that cortical mGlu5 receptors contribute to the 
development of nociceptive sensitization by supporting 
the activity of PV+ interneurons, which, in turn, nega-
tively regulate a top-down analgesic pathway originating 
from layer-5 pyramidal neurons (Fig. 1).

PNNs and maladaptive plasticity of cortical interneurons 
in chronic pain
PNNs, which are condensed structures of the extracellu-
lar matrix formed by chondroitin sulphate proteoglycans 
linked to hyaluronic acid and tenascin-R, surround PV+ 
interneurons and other types of GABAergic interneu-
rons, in the cerebral cortex and other CNS regions. Their 
formation coincides with the closure of temporal win-
dows of cortical plasticity during postnatal development 
[54–56], and this isolates PV+ interneurons from the 
action of trophic factors, which might have detrimental 
effects on their function and plasticity. However, PNNs 
are dynamic structures, which may disassemble and 
assemble in response to stress or during learning [57, 58]. 
Dysfunction in PV/PNNs interneurons in thalamus and 
cortex has been implicated in a number of other condi-
tions in psychiatry and neurology [59].

Fig. 1  Activation of mGlu5 receptors and formation of PNNs may caused a novel activity of PV+ interneurons, which in turn inhibit a top-down 
analgesic pathway originated from layer 5 of SSCtx. The interconnection between activation of mGlu5 receptors and formations of PNNs remains 
to be elucidated
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We found recently that chronic inflammatory pain in 
mice induced by unilateral injection of complete Freund 
adjuvant (CFA) in the hind paw was associated with an 
increased density of PNNs labelled with the lectin, Wiste-
ria floribunda (WFA), in the contralateral somatosensory 
cortex, medial prefrontal cortex (e.g. anterior cingulate, 
prelimbic, and infralimbic cortices), and reticular tha-
lamic nuclei [60] (Fig. 2).

Increases in PNN density were also found in differ-
ent regions of the pain matrix after induction of neuro-
pathic pain (Mascio et al., under revision). In mice with 
chronic inflammatory pain, local enzymatic degradation 
of PNNs in the somatosensory cortex caused analgesia 
and corrected the enhanced inhibitory transmission at 
the synapses between interneurons and layer-5 pyrami-
dal neurons associated with chronic pain [60]. This dis-
closes a novel form of maladaptive plasticity in which an 
increased formation of PNNs stabilizes excitatory inputs 
of PV+ interneurons [61], which become overactive and 
restrain the activity of a descending analgesic pathway. 
This hypothesis was supported by experiments in which 
the GABAA receptor antagonist, bicuculline, was injected 
in the mouse somatosensory cortex. In control mice, 
GABAA receptor blockade in the somatosensory cortex 
reduced pain thresholds, as expected. Opposite effects 
were seen in mice with chronic inflammatory pain, in 
which GABAA receptor blockade in the somatosensory 
cortex caused analgesia (Fig. 3, unpublished data, meth-
ods and statistics are reported in the figure legend).

Activation of mGlu5 receptors and enhanced forma-
tion/reduced degradation of PNNs may converge to 
increase the activity of PV+ interneurons, which, in 
turn, inhibit a descending analgesic pathway, as out-
lined above. What remains to be established is whether 
these two phenomena, i.e. activation of mGlu5 recep-
tors and the build-up of PNNs enwrapping GABAergic 

interneurons associated with chronic pain, are intercon-
nected. This question has not been addressed in models 
of chronic pain. However, we found that mGlu5 recep-
tors are key regulators of PNN formation during the 
first 16  days of postnatal development, when genetic 
deletion or pharmacological blockade of mGlu5 recep-
tors substantially enhance the density of PNNs in the 

Fig. 2  Increased density of WFA+ PNNs in the SSCtx of mice developing chronic inflammatory pain. Representative images showing the increased 
density of WFA+ PNNs (green) and PV+ neurons (red) in the contralateral SSCtx associated with chronic inflammatory pain (Mascio et al., [60]). Scale 
bar 100 µm

Fig. 3  Effect of intracortical infusion of bicuculline on pain thresholds 
in mice injected with CFA or vehicle. Mice were anaesthesized 
with isoflurane and stereotaxically implanted with a 27-gauge 
injection cannula in the SCCtx (AP: 0, L: 3, DV 2.2 mm), fixed 
with acrylic cement. Three days later, mice were injected with CFA 
or vehicle in the hindlimb contralateral to the injection cannula. 
Bicuculline (Tocris Cookson Ltd., Bristol, UK) was dissolved into saline 
and infused in the SSCtx contralateral to CFA or vehicle with a 5-µl 
Hamilton syringe connected by a catheter to the injection cannula. 
Mice were infused with 0.5 µl of bicuculline solution (20 ng/µl) 
or saline in 90 s. Mechanical thresholds were measured 1 h prior 
to and 5 min after intracortical infusions. Values are means ± SEM 
of 4–6 mice per group. *Significantly different vs. the respective 
values obtained 1 h prior to bicuculline infusion. The experimental 
protocol was approved by the Italian Ministry of Health, 
1135/2020-PR
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somatosensory cortex. This effect was associated with 
an increased expression of genes encoding structural 
components of PNNs and a reduced activity of the 
PNN-degrading enzyme, type-9 matrix metalloprotein-
ase (MMP-9) [62]. In addition, mGlu5 receptors shaped 
the PNN response to sensory stimulation or deprivation 
in the first 2  weeks of postnatal life [62]. Interestingly, 
mGlu5 receptors are highly expressed and functional in 
the first 2 weeks of postnatal life, when mGlu5 receptor-
mediated PI response is remarkable [63–67].

Although the density of PNNs in the adult somatosen-
sory cortex did not differ between wild-type and mGlu5 
knockout mice [62], we cannot exclude that the control 
of mGlu5 receptors on PNN formation is restored within 
the context of nociceptive sensitization and perhaps in 
an opposite direction with respect to early postnatal 
development. It will be interesting to examine whether 
the build-up of PNNs associated with chronic pain in 
difference regions of the pain matrix is affected by treat-
ment with drugs that either activate or inhibit mGlu5 
receptors.

Concluding remarks
In spite of the multiple classes of analgesic agents, the 
treatment of chronic pain is still suboptimal, and some 
types of pain, e.g. neuropathic pain, are highly resistant 
to medication [68, 69]. The social and economic burden 
is enormous considering that 15 − 20% of visits at physi-
cians are caused by chronic pain [68]. Novel treatments 
are urgently needed, and the use of drugs targeting spe-
cific cell types of the pain matrix regulating pain percep-
tion and motor and affective responses to pain is a path 
to follow. The use of transcranial magnetic stimulation 
(TMS) is a remarkable example of a brain region-specific 
approach in the treatment of refractory pain [70–72]. 
Interestingly, modulation of GABAergic transmission 
has been proposed as one of the mechanisms by which 
repetitive TMS is beneficial in the treatment of pain [73].

Here, we propose a novel mechanism of nociceptive 
sensitization based on structural and functional changes 
in PV+ interneurons in different regions of the pain 
matrix. mGlu5 receptors, which become highly func-
tional in response to pain (see above), might synergize 
with NMDA receptors in activating PV+ interneurons, 
thus disrupting a defensive mechanism against patho-
logical pain. In addition, activation of mGlu5 might drive 
a chain of intracellular reactions that either enhance 
the formation or reduce degradation of PNNs, which 
would stabilize the activity of PV+ interneurons. While 
the causal relationship between PNNs and behavioural 
responses to chronic inflammatory or neuropathic pain 
has been established ([60], Mascio et  al., under revi-
sion], the link between mGlu5 receptors and PNNs is 

still speculative and remains to be demonstrated. What 
makes this mechanism attractive is that it can be targeted 
by therapeutic intervention according to the principle of 
precision medicine. The use of mGlu5 receptor NAMs in 
the treatment of chronic pain could be optimized if these 
drugs are specifically directed towards regions of the pain 
matrix where receptor blockade is sufficient and neces-
sary to cause analgesia. This could be achieved by light-
sensitive drugs, which can be activated in a specific brain 
region with high spatio-temporal resolution [43, 44]. This 
intervention requires the implantation of LEDs in the 
brain parenchyma and, therefore, might be restricted to 
severe types of pain that are refractory to medication.

Targeting PNNs in the treatment of pain is a more dif-
ficult task for two reasons: (i) it requires the local injec-
tion of chondroitinase or other PNN-degrading enzyme 
in the somatosensory cortex, which is not practical from 
a therapeutic standpoint, and (ii) this intervention might 
disrupt the physiological function of the extracellular 
matrix, and, therefore, disrupt an important mechanism 
in the regulation of synaptic function. It may be interest-
ing, however, to examine whether, and to what extent, 
different classes of analgesic drugs affect the activity of 
enzymes that regulate the turnover rate of PNNs, such as 
MMP-9. These drugs might be locally delivered (or acti-
vated by light) to limit the build-up of PNNs associated 
with chronic pain.
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