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Abstract 

Mechanical ventilation is a life-saving technology, but it can also inadvertently induce lung injury and increase 
morbidity and mortality. Currently, there is no easy method of assessing the impact that ventilator settings have on 
the degree of lung inssflation. Computed tomography (CT), the gold standard for visually monitoring lung function, 
can provide detailed regional information of the lung. Unfortunately, it necessitates moving critically ill patients to a 
special diagnostic room and involves exposure to radiation. A technique introduced in the 1980s, electrical imped-
ance tomography (EIT) can non-invasively provide similar monitoring of lung function. However, while CT provides 
information on the air content, EIT monitors ventilation-related changes of lung volume and changes of end expira-
tory lung volume (EELV). Over the past several decades, EIT has moved from the research lab to commercially avail-
able devices that are used at the bedside. Being complementary to well-established radiological techniques and 
conventional pulmonary monitoring, EIT can be used to continuously visualize the lung function at the bedside and 
to instantly assess the effects of therapeutic maneuvers on regional ventilation distribution. EIT provides a means of 
visualizing the regional distribution of ventilation and changes of lung volume. This ability is particularly useful when 
therapy changes are intended to achieve a more homogenous gas distribution in mechanically ventilated patients. 
Besides the unique information provided by EIT, its convenience and safety contribute to the increasing perception 
expressed by various authors that EIT has the potential to be used as a valuable tool for optimizing PEEP and other 
ventilator settings, either in the operative room and in the intensive care unit. The effects of various therapeutic 
interventions and applications on ventilation distribution have already been assessed with the help of EIT, and this 
document gives an overview of the literature that has been published in this context.
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Introduction
Electrical impedance tomography (EIT) is a non-invasive 
tool that displays regional changes in lung volume and 
the distribution of ventilation at the bedside in real-time, 
providing information about gas distribution, regional 
ventilation delay, and, more recently pulmonary perfu-
sion. This dynamic assessment can help clinicians opti-
mize and individualize ventilator parameters tailored 
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to a patient’s characteristics. Indeed, EIT may assist in 
optimizing mechanical ventilation settings, taking into 
account the heterogeneity of the lung. In addition, real-
time monitoring of lung function can allow clinicians 
to more accurately predict patient recovery, thereby 
reducing dependence on the ventilator, and at the same 
time, avoiding the risks of premature weaning. Being 
a noninvasive and safe technique, the popularity of EIT 
is increasing among phyisicians caring for mechanically 
ventilated patients. This review article provides an over-
view of the EIT literature with a focus on its application 
in various clinical scenarios.

Acute respiratory distress syndrome
In the 1980s, preliminary reports discussed how imped-
ance changes measured within the thorax during spon-
taneous breathing with an EIT system were linearly 
correlated with tidal volume [1]. As it became clear that 
the acute respiratory distress syndrome (ARDS) was 
characterized by a heterogeneous distribution of ven-
tilation [2], EIT emerged as a practical tool to monitor 
regional ventilatory abnormalities and guide the titration 
of mechanical ventilation in patients with ARDS [3–5].

Assess recruitability
Recruitability refers to the potential to stabilize the re-
opening of atelectatic lung regions with the application 
of higher positive end-expiratory pressure (PEEP). The 
observation that ARDS patients present highly variable 
degrees of recruitability [6] has fueled interest in meas-
uring recruitability at the bedside and suggests that this 
should be done prior to selecting a personalized PEEP. 
Increasing PEEP in the absence of recruitability is asso-
ciated with deleterious consequences including hemody-
namic depression and overdistension. A simple bedside 
maneuver based on respiratory mechanics can estimate 
recruitability with higher PEEP [7], but compared to EIT-
based methods, this technique cannot be used during 
spontaneous breathing or for continuous monitoring and 
only provides a global assessment.

The change in end-expiratory lung impedance meas-
ured by EIT allows for the calculation of the volume 
recruited by changing PEEP [8]. This volume is then 
divided by the change in PEEP to obtain its compliance. 
Finally, compliance of the recruited lung is divided by 
the compliance of the respiratory system at lower PEEP 
(i.e., the size of the baby lung) to obtain the recruitment 
to inflation (R/I) ratio. Values above 0.5–0.7 indicate 
higher recruitability. The regional R/I ratio of the dorsal 
lung may be even more sensitive for the estimation of 
recruitability.

Importantly, EIT assesses recruitability at a 
regional level and provides crucial information 

about whether recruitment in the dorsal lung has 
occurred at the cost of concomitant overdistension 
in the ventral areas. EIT has shown heterogeneity 
in regional lower inflection points (LIP) and upper 
inflection points (UIP) of pressure-volume curves in 
ARDS patients [9, 10], with higher regional LIP indi-
cating need for higher PEEP to restore aeration and 
airway patency.

Finally, improved compliance of the most dorsal 
regions at higher PEEP may indicate recruitability in a 
dynamic and simple fashion [11].

Setting positive end‑expiratory pressure
In 1975, Suter et  al. proposed that the optimal PEEP 
resulted in the highest respiratory system compliance, 
the lowest dead-space fraction, and the greatest oxygen 
delivery [12]. In the era of lung protective ventilation, the 
benefits of improved oxygen transport must be balanced 
with the risks of local alveolar overdistension and ventila-
tor-induced lung injury [13].

Costa et  al. described an EIT-based approach to 
assess collapse and overdistension by comparing EIT to 
CT scanning [14]. By assessing the tidal change in lung 
impedance divided by the driving pressure they proposed 
a “per pixel” compliance. The relative changes in pixel 
compliance during a decremental PEEP trial allowed 
quantification of the regional effects of PEEP on lung 
mechanics. Loss of compliance associated with increas-
ing PEEP was termed “overdistension” whereas loss of 
compliance associated with decreasing PEEP was termed 
“collapse.” Knowing the percentage of overdistended and 
collapsed pixels at each level, optimal PEEP was defined 
as the value that maximized recruitment and minimized 
overdistension. This approach often provides an incen-
tive to reduce PEEP [15].

Once PEEP is set, EIT can ensure that recruitment 
is maintained. Eronia et  al. [16] performed a PEEP 
titration targeting stability of end-expiratory lung vol-
ume. This method defined a PEEP that maintained 
lung recruitment in most patients and led to the selec-
tion of higher PEEP compared to a standard PEEP to 
 FiO2 table. This approach was also associated with an 
improvement in respiratory system compliance and 
oxygenation.

An important caveat to EIT is that it provides meas-
urements of lung volume that are based on relative 
values between two states. Furthermore, the range 
of start and end PEEP values included in the decre-
mental trial can potentially mislead the clinician if too 
narrow a range is used and impact the EIT-derived 
optimal PEEP.  The following case study show the an 
integrated approach used to identify an appropriate 
setting of ventilation.
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Case study
A 35-year-old man was admitted to the ICU with a 
diagnosis of ARDS secondary to COVID-19. He was 
sedated  and paralyzed while receiving controlled 
mechanical ventilation with a volume-controlled mode. 
The baseline  total PEEP was 14 cmH2O. Airway driv-
ing pressure was 14 cmH2O and exhaled VT was 429 
mL with a RR of  2  23 and FiO2 of 0.4. The R/I ratio 
was calculated as 0.44, suggesting a lower potential for 
lung recruitment at  higher PEEP.  A decremental PEEP 
trial was performed to personalize this patient’s PEEP. 
The ventilator mode was switched  to pressure-control 
(PC) with a driving pressure (PC above PEEP) set at 15 
cmH2O throughout the trial. First,  PEEP was increased 
to 18 cmH2O (time point A on Fig.  1) and maintained 
for 1 minute. Then PEEP was decreased by increments of 
2 cmH2O until a PEEP of 8 cmH2O was achieved, with 
each PEEP level maintained for 1 minute (time points B 
through F). Respiratory mechanics and oxygen saturation 
recorded during each step reported in Table 1.

Non‑intubated patients
There is increasing interest in preserving spontaneous 
breathing in patients with ARDS and understanding 
whether such an approach is lung protective [17]. In this 
setting, EIT can assist in titrating respiratory support 
and identifying the consequences of excessive respiratory 
drive and effort that increase regional lung stress and 
strain [18, 19].

Yoshida et al. used EIT to demonstrate that a switch to 
spontaneous breathing in an ARDS patient could result 
in a nearly twofold increase in ventilation distributed to 
dependent lung zones [20]. This was accompanied by 
deflation of the ventral lung shortly after initiation of the 
breath. This movement of air from one region of the lung 
to another, termed “occult pendelluft”, can cause signifi-
cant local overdistension.

In ARDS patients treated with pressure support ven-
tilation, Mauri et  al. used EIT to demonstrate a more 
homogenous distribution of ventilation when the pres-
sure support level was titrated to a physiologic range 
of  P0.1 [21]. EIT can also be used to assess the clinical 
impact of respiratory support with high flow nasal can-
nula [22] and identify patients at risk for failure during 
support with non-invasive ventilation [23].

Acute exacerbations of COPD
Chronic obstructive pulmonary disease (COPD) is char-
acterized by a heterogenous increase of regional airway 
resistances and lung compliances. In stable patients with 
COPD, this pathologic increase in regional time con-
stants can be visualised by EIT as a heterogeneous distri-
bution of ventilation and variable filling/emptying times 

across lung units [24, 25]. Acute exacerbations of COPD 
(AECOPD) are a frequent cause of presentation to the 
emergency department and clinicians face the difficult 
challenge of balancing effective  CO2 washout with the 
risk of dynamic hyperinflation when providing respira-
tory support. EIT can aid in monitoring and managing 
these patients, particularly in titrating ventilatory sup-
port and assessing response to therapy (Table 2).

In ventilated patients with AECOPD, dynamic hyper-
inflation (intrinsic PEEP) can occur due to the increased 
time constants of lung units and shorter expiratory time 
due to a higher respiratory rate. If the externally applied 
PEEP is inadequate, intrinsic PEEP results in increased 
work of breathing and an inhomogeneous distribution of 
ventilation. In this setting, EIT can be used to set an opti-
mal PEEP that minimizes the consequences of dynamic 
hyperinflation. Interestingly, Kostakou et al. performed a 
PEEP titration assessing ventilation heterogeneity using 
EIT in a mechanically ventilated patient with a severe 
AECOPD and evidence of dynamic hyperinflation [26]. 
They set PEEP to 0%, 50%, 80%, 100%, and 150% of the 
globally measured intrinsic PEEP and measured the 
regional delay of ventilation, the time for a lung region 
to attain a certain impedance change [32]. An optimal 
homogeneity with the lowest delay of ventilation was 
achieved at a PEEP set to 80% of the intrinsic PEEP. 
Interestingly, this PEEP value also resulted in the great-
est exhaled tidal volume, but not the greatest respiratory 
system compliance.

In an intubated patient with COPD, Mauri et al. dem-
onstrated the usefulness of EIT in selecting a personal-
ized external PEEP in the setting of intrinsic PEEP [27]. 
During a decremental PEEP trial, EIT displayed that the 
PEEP level at which dependent lung regions stopped 
deflating (indicative of the quantity of regional intrinsic 
PEEP) was higher than for non-dependent. PEEP was set 
at a level corresponding to the highest level of regional 
intrinsic PEEP, and the patient was successfully transi-
tioned to assisted ventilation. Importantly, this PEEP 
level was higher than the traditionally measured global 
value obtained during an end-expiratory occlusion.

Karagiannidis et  al. demonstrated the feasibility and 
reliability of measuring regional time constants using EIT 
[31]. They reported significant heterogeneity and overall 
increased time constants in invasively ventilated patients 
with AECOPD compared to ARDS. Moreover, they 
detected regional differences in airflow limitation and the 
response to different levels of applied PEEP.

The heterogeneity of time constants in patients with 
COPD can cause an asynchronous pattern of ventilation 
giving rise to occult pendelluft and regional overdisten-
sion. In patients with AECOPD, Sang et al. demonstrated 
significant heterogeneity in the magnitude and timing of 
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impedance versus time curves in different regions of the 
lung [33]. These “phase shifts” and the heterogeneity of 
amplitude differences indicated delays between emptying 
of different lung units. The magnitude of EIT measured 
expiratory delays worsened with increasing airway resist-
ance and improved after administration of bronchodila-
tor therapy, suggesting that EIT can be a helpful adjunct 
in monitoring patients with AECOPD over time.

By measuring flow versus time curves at end-expi-
ration, Zhao et  al. also used EIT to identify regional 
air-trapping and assess the response to bronchodilator 
therapy in patients with AECOPD [28].

In terms of ventilation mode, in patients with AECOPD 
receiving assisted (pressure support) ventilation, Sun 
et al. used EIT to demonstrate that switching to a neurally 
adjusted ventilatory assist mode increased the homoge-
neity of the distribution of ventilation and reduced the 
work due to trigger [30].

Altogether, a nuanced approach to ventilator manage-
ment and a PEEP selection that optimizes work of breath-
ing in patients with AECOPD may be facilitated with an 
EIT-guided approach.

COVID‑19 acute respiratory failure
The novel coronavirus disease 2019 (COVID-19) pan-
demic has led to an overwhelming amount of mechani-
cally ventilated patients [34] with severe hypoxemic acute 
respiratory failure (hARF) consequent to either alveolar 
or vascular injury or both [35]. EIT has been proposed 
as a valuable tool to personalize the management of 
COVID-19 patients with hARF [36–40].

Recent data indicate that limiting driving pressure (DP) 
as much as possible reduces the risk of death in mechani-
cally ventilated COVID-19 hARF patients [41]. By esti-
mating the loss of compliance due to lung collapse and 

Fig. 1 demonstrates a regional analysis of lung mechanics obtained during the decremental PEEP trial, provided as a diagnostic tool. Alveolar 
overdistension is represented in orange as a “compliance loss” (C loss HP) that occurred at higher PEEP (more overdistension at time point A (PEEP 
18  cmH2O) compared to B (PEEP 16  cmH2O)). Alveolar collapse is represented in white as a “compliance loss” (C loss LP) that occurred at lower PEEP 
(more collapse at time point F (PEEP 8  cmH2O) compared to E (PEEP 10  cmH2O)). The crossover point representing minimal overdistension and 
atelectasis was 10  cmH2O (time point E). Below this value, dorsal collapse increased. Above this value, no collapse was detected, but increasing 
ventral overdistension developed. This example illustrates how EIT might be used as an incentive to reduce PEEP and optimize regional lung 
mechanics in a patient with ARDS
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overdistension [14], EIT offers the possibility to minimize 
DP by individualizing PEEP selection [42].

Sella et  al. [38], in a cohort of intubated COVID-19 
patients, found that the median PEEP selected by EIT 
 (PEEPEIT) that minimized the overall loss of compliance 
was 12  cmH2O [interquartile range 10–14  cmH2O] [43] 
and corresponded to the intersection between the EIT 
alveolar collapse and overdistension curves [14]. Notably, 
the loss of lung compliance due to lung collapse observed 
with PEEP values from the lower PEEP/FiO2 table was 
comparable to  PEEPEIT, whereas the loss of lung compli-
ance due to lung overdistension was significantly greater 
with PEEP values from the higher PEEP/FiO2 table than 
with  PEEPEIT, suggesting better agreement between 
 PEEPEIT and the lower PEEP/FiO2 table [38]. In keeping 
with these results, Perier et al., in a series of 17 COVID-
19 hARF patients, found a median  PEEPEIT of 12 [9-12] 
 cmH2O, without significant differences between patients 
with respiratory system compliance (Crs) ≥ 40 mL/
cmH2O and <40 mL/cmH2O [39].

In contrast, Van der Zee et  al. found higher values of 
 PEEPEIT (21 [16–22]  cmH2O), closer to those advised 
by the higher PEEP/FiO2 table [40]. These discrepancies 
may be partly explained by the different criteria used 

for  PEEPEIT selection in this study, set 2  cmH2O above 
the intersection of the curves representing the cumula-
tive percentage of compliance loss due to lung collapse 
and overdistension [40]. Furthermore, Van der Zee et al. 
enrolled more obese patients (median body mass index of 
30.0 [27.0–34.0] kg/m2 [40], compared to Sella et al. (26.2 
[25.4–30.9] kg/m2) [38], perhaps explaining the higher 
PEEP in the setting of reduced chest wall compliance 
[44].

A scientific dispute among opinion leaders has debated 
the use of noninvasive respiratory supports in COVID-19 
hARF. While some authors are concerned about the risk 
of patient self-inflicted lung injury [45], others are cau-
tious, considering the harms of unnecessary intubation 
[46]. Indeed, duration of NIV use [47, 48] and location of 
application [48] have been associated with hospital mor-
tality in COVID-19 patients intubated after NIV failure. 
EIT has been proposed as a tool to assess the response 
to continuous positive airway pressure (CPAP) and rec-
ognize patients at risk for CPAP failure [23]. In a series of 
10 patients admitted to the ICU for COVID-19 pneumo-
nia and supported with CPAP, Rauseo et  al. performed 
an EIT-guided decremental PEEP trial from 12  cmH2O 
to 6  cmH2O and found that a reduction of EELI smaller 

Table 1 Respiratory mechanics and oxygen saturation recorded during each step

Baseline 
PEEP 14 
 cmH2O

PEEP 18  cmH2O PEEP 16  cmH2O PEEP 14  cmH2O PEEP 12  cmH2O PEEP 10  cmH2O PEEP 8  cmH2O

EIT image reference 
letter

A B C D E F

Ventilator mode VCV PCV PCV PCV PCV PCV PCV

VTE (mL) 429 390 446 511 558 553 587

Driving pressure 
 (cmH2O)

14 15 15 15 15 15 15

CRS (mL/cmH2O) 30.6 26 29.7 34.1 37.2 36.9 39.1

SpO2 91 93 94 95 96 95 95

Table 2 Pathophysiology of COPD as assessed by EIT

Spatial lung heterogeneity
Pathophysiological variable EIT parameter
Regional dynamic hyperinflation/intrinsic PEEP [26]. Regional decrease of end-expiratory lung volume during decremental PEEP trial [27].

Regional end-expiratory flow not returning to zero before next breath [28].

Heterogenous distribution of ventilation within the lungs. Elevated global inhomogeneity index [29].
Uneven distribution of ventral/dorsal ventilation [30].

Temporal lung heterogeneity
Pathophysiological variable EIT parameter
Heterogeneity of regional start of inflation/deflation—regional 
differences in time constants.

Out of phase filling and emptying of different regions of the lung [25, 31].
Regional ventilation-delay index [32].

Regional pendelluft [33]. Volume shifts between lung regions during end inspiratory hold.
Time difference between global and regional impedance versus time curves [24, 33].
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than 40% after PEEP de-escalation predicted CPAP fail-
ure [23].

COVID-19 hARF is characterized not only by alveolar 
injury, but also by severe pulmonary vascular disruption 
[49] with small- and mid-sized pulmonary vessel throm-
bosis [35], associated with a hypercoagulable state [50, 
51]. Recent data from COVID-19 patients suggest the 
potential of an EIT perfusion assessment to detect both 
ventilation-perfusion (V/Q) mismatch [52–54] and pul-
monary vasculature alterations, consistent with findings 
of computed tomography pulmonary angiography [55, 
56].

Prone positioning has been widely applied in COVID-
19 hARF, with 61% of intubated patients undergoing at 
least one cycle of prone positioning [56].

Nevertheless, the mechanisms underlying the improve-
ment in oxygenation after prone positioning in COVID-
19 patients remain unclear.

Zarantonello et al. described the case of one COVID-
19 hARF patient, studied with EIT ventilation-perfusion 
analysis in the supine position and 60 min after being 
turned prone, and found that prone positioning increased 
ventilation in the dorsal areas and shifted perfusion to 
the ventral areas, overall improving V/Q matching [52]. 
Perier et al., in 17 COVID-19 hARF patients [39], found 
no difference between  PEEPEIT in the supine and prone 
position and no improvement in DP and Crs after turn-
ing patients prone, thereby casting doubt on the role of 
alveolar recruitment in the improvement of arterial oxy-
genation during prone positioning. Subsequently, Perier 
et  al., in a cohort of 9 patients with COVID-19 hARF, 
showed that turning patients from the supine to prone 
position decreased ventral dead space and dorsal shunt 
with a trend towards an improvement in V/Q matching, 
especially in the ventral areas of the lung [53].

Anesthesia and perioperative period
EIT monitoring during the perioperative period can 
improve the care of patients undergoing different surgical 
procedures and aims to reduce post-operative pulmonary 
complications by identifying factors that may benefit 
from a personalized ventilator strategy.

Anesthesia induction
A certainty of anesthesia induction is a decrease in func-
tional residual capacity, the magnitude of which is unpre-
dictable (FRC) [57, 58]. Ideal ventilator management 
aims to maintain end-expiratory lung volume at a value 
that is as similar as possible to preoperative FRC. Reduc-
tions in FRC result in derangements of the blood gases 
and ventilation/perfusion mismatch [59–61].

On the other hand, an unphysiological increase in FRC 
should be considered unsafe, as this may augment lung 
stress [62]. Difficulty in providing an optimal ventilator 
strategy is probably due to the limited value of informa-
tion available during perioperative ventilation, such as 
plateau pressure or tidal volume per kilogram of body 
weight, which can only weakly characterize the mechani-
cal properties of the respiratory system [63]. Further-
more, with the adoption of “protective ventilation” in the 
operative room, the modern concept of driving pressure 
finds its application, only a very low external PEEP is 
given, for reliable information about dynamic strain [64]. 
Based on the recent literature, EIT monitoring may play 
a pivotal role in providing a bedside assessment of FRC.

EIT demonstrated a decrease in FRC after anesthesia 
induction that was reversed by the application of PEEP in 
morbidly obese patients undergoing laparoscopic gastric 
bypass surgery [65]. In these patients, pre-oxygenation 
with a tight-fitting mask and 10  cmH2O of PEEP tran-
siently increased FRC and prevented hypoxemia during 
anesthesia induction. Nestler et  al. demonstrated that 
bag-mask ventilation without applied PEEP resulted in a 
significant decrease in post-intubation FRC [66]. There-
fore, EIT represents an encouraging opportunity to mon-
itor the efficacy of different pre-oxygenation strategies 
(Fig. 2).

Intraoperative mechanical ventilation
As mentioned above, the loss of FRC during general 
anesthesia is unpredictable, due to many contributing 
factors including a patient’s pathophysiology, anesthesia 
technique, body positioning, and/or surgical procedures. 
It is, however, well known that this loss of FRC results in 
atelectasis in more than 90% of patients [57–59]. Ukere 
et al. [67, 68], using EIT in both anesthetized and awake 
patients identified under ventilated “silent spaces,” in dif-
ferent body positions. The availability of this information 
at the bedside may guide the setting of external PEEP, 
limiting the development of atelectasis and consequences 
related to PPC and infections. During general anesthesia, 
based on a breath-by-breath analysis, electrical imped-
ance tomography can highlight changes in lung aeration 
and the distribution of ventilation, thereby allowing the 
clinician to titrate mechanical ventilation on the basis of 
a patient’s regional respiratory mechanics [69]. In the last 
few years, research based on optimizing PEEP guided by 
EIT at the bedside identified a method for determining 
the “best” PEEP as that which minimizes alveolar over-
distension and collapse, limits driving pressure and opti-
mizes oxygenation [70]. Indeed, Pereira et  al. showed 
that the effect of this EIT-based approach was more 
considerable during laparoscopic procedures compared 
to laparotomies. Nestler et  al. [66] proposed another 
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EIT-derived parameter to set PEEP in obese patients 
undergoing general anesthesia: the regional ventilation 
delay index (RVDI), defined as the standard deviation of 
Regional Ventilation Delay (a measure of the temporal 
delay in ventilation of regions of the lung) in all pixels. A 
lower RVDI indicates a more homogeneous distribution 
of ventilation and thus may limit derecruitment. Their 
protocol consisted of a recruitment maneuver, followed 
by the application of PEEP titrated to minimize RVDI. 
When compared to a fixed PEEP (5  cmH2O), this method 
led to a significant improvement in oxygenation and bet-
ter regional homogeneity, with no deleterious postopera-
tive effects.

One of the most useful and fascinating parameters 
obtained from EIT to evaluate the effects of differ-
ent PEEP levels is the End Expiratory Lung Impedance 
(EELI), which represents the impedance at the end of 
expiration. Changes in EELI reflect lung recruitment 
due to PEEP. Using this parameter, Erlandsson et al. [65] 
showed that, in obese patients undergoing laparoscopic 
surgery, an increase or decrease in the slope of EELI 

following a change in PEEP, corresponded to recruit-
ment or derecruitment, respectively, whereas a stable 
end-expiratory lung volume reflected optimal PEEP. Ero-
nia et  al. [16], in patients with acute respiratory failure, 
showed that it is possible to measure recruitment from 
the variation in EELI measured at the beginning and 
end of a recruitment maneuver and that PEEP could 
be titrated according to the change in ∆EELI. This 
method might even be useful during general anesthe-
sia: an increase in EELI lower than that predicted by the 
recruited volume could be helpful in suggesting the pres-
ence of lung overdistension [71].

EIT application does not exclusively describe how to 
set ventilation or physiology of the respiratory system. 
It has also been used during thoracic surgery to con-
firm the correct positioning of double lumen endotra-
cheal tubes (DLT) and titrate the optimal combination 
of tidal volume and PEEP in patients requiring one-
lung ventilation (OLV). Compared to the gold standard 
fiberoptic bronchoscopy for routine confirmation of 
the correct positioning of DLT, EIT has the advantage 
of allowing clinicians to non-invasively identify any 

Fig. 2 From spontaneous breathing (a) to induction of anesthesia and ventilation in bag mask (b) and controlled mechanical ventilation, followed 
by the application of an external PEEP (c)
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misplacement of DLTs in the contralateral main bron-
chus by accurately displaying left and right lung ven-
tilation [72]. Transitioning from two-lung ventilation 
(TLV) to OLV, the mechanical properties of the venti-
lated lung undergo significant changes. The exclusion of 
one lung from ventilation in the lateral decubitus posi-
tion determines a change in lung compliance, resist-
ance, and the distribution of tidal volume. Hence, the 
ventilatory management of these patients is challenging 
and tidal volume and PEEP should be frequently reas-
sessed during each surgery step [60, 73]. Each of these 
physiologic variations can be detected by EIT. Using an 
index of inhomogeneity derived from EIT (GI, global 
inhomogeneity index), Zhao et al. [74] showed that it is 
possible to titrate the combination of PEEP and TV in 
patients shifting from TLV to OLV. In their study, they 
found a good degree of inter-patient equivalence and 
the GI correlated with the gas distribution in the lung. 
The same authors recently explored if the regional ven-
tilation distribution (measured by EIT) and  PaO2 could 
help titrating TV and PEEP during OLV [75].

Future perspectives and large RCTs will elucidate 
the usefulness of EIT in setting intraoperative venti-
lation and clarify whether the use of EIT reduces the 

incidence of postoperative pulmonary complications 
(PPC).

Post‑extubation period
EIT also allows for the continuous monitoring of 
patients in the postoperative period (Fig.  3). The end 
of surgery and subsequent post-extubation phase are 
times that require close monitoring due to the abrupt 
discontinuation of mechanical ventilation and loss of 
respiratory monitoring that was provided by the ven-
tilator. In addition, these changes coincide with the 
persisting consequences of sedation, including muscle 
weakness, reduced inspiratory effort and transpulmo-
nary pressure, an impaired cough reflex and ability to 
clear secretions due to residual paralysis, and/or poor 
pain control. Altogether, these factors contribute to an 
increased risk of postoperative pulmonary complica-
tions, which might easily be identified by monitoring 
changes in ventilation distribution and EELI meas-
ured by EIT, especially at the end of the surgical pro-
cedure. Schaefer et  al. [69] described the feasibility of 
using EIT to monitor regional tidal volume distribution 
before the induction of anesthesia, intra-operatively, 
after extubation, and in the post-operative period. The 

Fig. 3 In the first part of the recording, the patient was still intubated and under controlled mechanical ventilation (a). After the weaning process, it 
is possible to follow the extubation period and the patient breathing spontaneneusly (b), followed by the application of a postoperative CPAPs
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authors showed that during general anesthesia, tidal 
ventilation is distributed to the ventral part of the lungs 
due to muscle paralysis. When spontaneous breathing 
is restored and following extubation, ventilation, and 
re-aeration of the dorsal part of the lungs take place, 
increasing the homogeneity of ventilation, decreas-
ing the tendency for atelectasis. Interestingly, despite 
using a personalized intra-operative PEEP setting and 
a recruitment maneuver before extubation, early post-
operative EELV is lower compared to baseline before 
induction of anesthesia [66]. A decrease in EELV at 
the end of surgery might represent an “alarm bell” that 
suggests an increased risk of developing postoperative 
atelectasis and extubation failure. For this reason, EIT 
monitoring can help to identify patients with a reduced 
post-operative EELV who might benefit from post-
extubation non-invasive ventilation and early mobiliza-
tion (i.e., obese patients) [76]. Karsten et  al. used EIT 
to evaluate the impact of low versus high PEEP dur-
ing laparoscopic surgery on post-operative ventilation 
distribution and showed that a higher intra-operative 
PEEP resulted in a more homogeneous distribution of 
ventilation in the early post-operative period [77].

Weaning
Weaning is the entire process leading patients to the dis-
continuation of mechanical ventilation and extubation 
[78]. A spontaneous breathing trial (SBT) is commonly 
performed to determine whether weaning has been suc-
cessful and the patient is ready for extubation. While vari-
ous clinical parameters are utilized to define SBT success, 
the most powerful predictor of weaning success is the 
respiratory rate (RR) to tidal volume (Vt) ratio (RR/Vt) 
[78]. About one fifth of patients, with rates varying from 
14 to 31% among studies, fail their first SBT attempt and 
require reinstitution of mechanical ventilation [78]. After 
a successful SBT, a fraction of patients, ranging from 3 to 
19% among studies, develop post-extubation respiratory 
failure requiring re-intubation, a complication associated 
with significantly increased mortality [78]. Prophylactic 
application of non-invasive ventilation (NIV) soon after 
extubation in patients at risk of post-extubation respira-
tory failure may prevent the need for re-intubation and 
improve outcomes [79]. Most studies broadly consider 
at-risk patients to be those older than 65 years old or with 
underlying cardiac or respiratory disease [79]. It is, there-
fore, of paramount clinical importance to improve the 
precision of weaning and extubation failure predictions 
and recent studies indicate a role of EIT for this purpose.

In a general population of 42 mechanically ventilated 
patients, Lima et al. assessed the variation of end-expir-
atory lung impedance (EELI) occurring during a 30-min 
SBT, as conducted by T-piece (10 patients) or low levels 

of pressure-support ventilation (PSV) (32 patients). In 
the T-piece group, irrespective of SBT outcome, EELI 
progressively declined throughout the SBT, though a 
significantly greater decrease in EELI was observed in 
patients failing the SBT [80]. In the PSV group, EELI did 
not vary significantly during the SBT and no difference in 
EELI variations was observed between patients with dif-
ferent SBT outcomes, likely because ventilator settings, 
including PEEP, before and during the SBT were quite 
similar [80]. No difference in Tidal Impedance Variation 
(TIV) was observed in both groups [80].

In 78 patients at risk for extubation failure, Longhini 
et al. applied EIT during an SBT conducted with low (2 
 cmH2O) CPAP applied through the ventilator circuit 
[81]. The authors also assessed the heterogeneity of air 
distribution within the lung, using the Global Inhomo-
geneity index (GI) [81]. Compared to weaning successes, 
patients failing the SBT were characterized by a greater 
loss in EELI during the SBT and a greater GI at baseline 
and during the course of the SBT [81]. Again, no differ-
ence in TIV was observed between SBT successes and 
failures [81].

In 31 patients experiencing prolonged weaning, Bick-
enbach et  al. also reported that T-piece SBT failure 
was characterized by a greater GI at baseline, while gas 
exchange and RR/Vt were not different between patients 
succeeding and failing the SBT [82]. Their results suggest 
that not attempting a SBT in patients with a baseline GI 
> 41.5 would avoid 87.5% of all SBT failures [82]. Moon 
et  al. recently found that GI was significantly greater 
in patients failing a T-piece SBT, in a population of 40 
patients either with (n=16) or without (n=24) diaphragm 
dysfunction [83]. In keeping with these previous results 
[81–83], in 53 patients mechanically ventilated for more 
than 72 h and undergoing their first T-piece SBT, Wang 
et al. further confirmed that GI prior to SBT helps to pre-
dict SBT outcome [84].

In a cohort of 30 patients with prolonged weaning, 
Zhao et  al. described different patterns of ventilation 
according to weaning outcomes; in patients succeeding, 
ventilation was redistributed towards the dorsal regions, 
with a more homogeneous distribution between the 
anterior and posterior regions when decreasing support 
levels [85].

During the weaning process, Longhini et  al. demon-
strated that chest physiotherapy as applied by high-fre-
quency chest wall oscillation (HFCWO) improves lung 
aeration in patients with copious secretions. Also note-
worthy, the association of HFCWO with a recruitment 
maneuver did not produce any further physiological ben-
efit [86].

Finally, the study by Longhini et  al. was the only one 
that investigated the potential of EIT to predict the 
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need for NIV in the post-extubation period. Among 61 
patients who successfully passed a SBT, 22 (36.1%) expe-
rienced post-extubation respiratory failure within 48 h. 
Up to 30 min after extubation, no differences in EELI, 
TIV, or GI were observed between patients succeeding 
and failing extubation [81].

Patient‑ventilator dyssynchrony In order to avoid the 
consequences of potentially harmful ventilator asynchro-
nies, EIT monitoring used during assisted spontaneous 
breathing can facilitate the early recognition of breath 
stacking and pendelluft [87, 88].

Breath stacking may be caused by reverse triggering or 
double-triggering and results in consecutive inspiratory 
cycles delivered by the ventilator during an incomplete 
exhalation [87]. When breath stacking occurs, EIT can 
demonstrate potentially harmful end-inspiratory lung 
volumes and is more sensitive when compared to con-
ventional monitoring, which only indicates a modest 
increase in  VT [89].

Pendelluft describes how gas movement between dif-
ferent pulmonary regions results in an uncontrolled 
and dangerous alveolar de-inflation and inflation, 
depicted as intrapulmonary asynchrony. EIT allows for 
the monitoring of a pendelluft phenomenon, since it 
can readily display air movement within the lung from 
nondependent to dependent regions even when  VT is 
unchanged [88]. This phenomenon can be caused by 
excessive diaphragmatic contractions during strong 
spontaneous efforts and may increase strain of the 
dependent lung during early inflation. Conventionally 
monitored respiratory parameters such as flow, vol-
ume, and pressure are unable to demonstrate Pendel-
luft whereas EIT can [88].

Noninvasive ventilation During non-invasive ventila-
tion, global parameters such as pressure-volume curves 
or the respiratory system compliance do not reliably 
illustrate what is actually happening in the lung, espe-
cially regarding the regional distribution of the adminis-
trated tidal volume, where high tidal volumes may lead to 
patient self inflicted lung injury (PSILI) [90–92].

A lung protective strategy, either during invasive and 
noninvasive ventilation, should require real-time moni-
toring of regional lung ventilation to determine the dis-
tribution of lung ventilation such as hyperventilation. 
During the height of the COVID-19 pandemic, Rauseo 
et al. [23] demonstrated that the number of patients with 
respiratory failure far exceeded the availability of inten-
sive care unit beds, often prompting physicians to choose 

non-invasive ventilation as initial therapy. Under such 
conditions, EIT was identified as a helpful tool to assess 
the response of patients to NIV and rapidly identify an 
optimal ventilatory strategy.

Bordes et  al. [93] assessed functional residual capacity 
and ventilation distribution in eighteen spontaneously 
breathing adult patients undergoing digestive endoscopic 
procedures under anesthesia and showed that, in awake 
patients, tidal volume was primarily distributed to the 
dependent lung (57.5 vs 43.1%; P = .009), whereas after 
anesthesia induction, ventilation shifted to the nonde-
pendent lung (43.1% before anesthesia, 58.9% after anes-
thesia; P = .002) with a marked decrease in end-expira-
tory lung impedance. In the same cohort, application of 
noninvasive ventilation resulted in a significant increase 
in end-expiratory lung impedance (P = .005) without 
changing the distribution of ventilation.

Lastly, high flow nasal cannula (HFNC) under EIT moni-
toring has shown improved oxygenation by increas-
ing both end-expiratory lung volume and tidal volume, 
regardless of body position suggesting an increase in 
functional residual capacity [94, 95].

Given the high number of patients treated with NIV/
HFNC, large randomized controlled trials are needed; 
future applications of EIT monitoring could be in tho-
racic trauma patients and/or pre- and postoperative 
patients treated with prophylactic NIV/HFNC (to avoid 
intubation and or complications related to intubation).

Conclusions
Evidence-based medicine has demonstrated that “one 
size doesn’t fit all.” Lung monitoring and mechanical ven-
tilation have been enhanced by the use of the EIT sys-
tem, and despite its limitations, this device represents a 
remarkable technological advance in the fields of anes-
thesia and critical care medicine.

Future perspectives
Future areas of inquiry include using EIT to guide the use 
of more novel technologies such as helmet NIV or extra-
corporeal  CO2 removal in patients with AECOPD.

Beyond ventilation, a novel feature of EIT is the ability 
to obtain the distribution of pulmonary blood flow [96, 
97] and a pixel-based mapping of ventilation to perfu-
sion ratios. This technology represents an exciting future 
potential to guide the treatment of patients with ARDS.
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